Refine your search:     
Report No.
 - 
Search Results: Records 1-7 displayed on this page of 7
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Experimental characterization of high-energy component in extracted pulsed neutrons at the J-PARC spallation neutron source

Harada, Masahide; Teshigawara, Makoto; Oi, Motoki; Oikawa, Kenichi; Takada, Hiroshi; Ikeda, Yujiro

Nuclear Instruments and Methods in Physics Research A, 1000, p.165252_1 - 165252_8, 2021/06

 Times Cited Count:2 Percentile:34.88(Instruments & Instrumentation)

This study explores high-energy neutron components of the extracted neutron beam at J-PARC pulsed neutron source using the foil activation method with threshold reactions. Foils of aluminum, gold, bismuth, niobium, and thulium were used to cover the neutron energy range from 0.3 MeV to 79.4 MeV. The experiment was performed using neutron beams of BL10 (NOBORU). The foils were irradiated by a neutron beam at 13.4 m from the moderator. To characterize high-energy neutron fields for irradiation applications, reaction rates in three different configurations with and without B$$_{4}$$C slit and Pb filter were examined. To compare the experiments with calculations given for the user, reaction rates for corresponding reactions were calculated by the PHITS code with the JENDL-3.2 and the JENDL dosimetry file. Although there was a systematic tendency in C/E (Calculation/Experiment) ratios for different threshold energies, which C/E ratio decreased as threshold energy increased up to 100 MeV, and all C/E ratios were in the range of 1.0$$pm$$0.2. This indicated that high-energy neutron calculations were adequate for the analysis of experimental data for NOBORU users.

JAEA Reports

Measurement of high-energy neutron fluxes and spectra around the J-PARC mercury spallation neutron target using multi-foil activation method

Kasugai, Yoshimi; Harada, Masahide; Kai, Tetsuya; Oi, Motoki; Meigo, Shinichiro; Maekawa, Fujio

JAEA-Data/Code 2015-033, 28 Pages, 2016/03

JAEA-Data-Code-2015-033.pdf:1.78MB

The high-energy neutron fluxes and spectra around the mercury spallation neutron source at MLF of J-PARC were measured by the multi-foil activation method. The threshold energies of neutron reactions utilized in this experiment covered from 0.1 to 50 MeV. The foil irradiation was carried out on the first beam-run of MLF from May 30th to 31th, 2008. After the irradiation, the induced radioactivity of each foil was measured using an HPGe detector, and the neutron-induced reaction-rate distribution around the mercury target was determined. Using these data, the high-energy neutron fluxes and spectra were deduced with unfolding method in which the neutron spectra calculated with PHITS code were used as the initial-guess spectra. By comparison between the initial and the unfolded spectra, it was shown that most of the calculation results, which had been the basis of the neutronics design of the MLF target assembly, were consistent with the experimental data within $$pm$$30%.

JAEA Reports

Proceedings of the 3rd Workshop on Dosimetry for External Radiations; November 28-29, 2002, Japan Atomic Energy Research Institute, Tokai, Ibaraki, Japan

Yoshizawa, Michio; Endo, Akira

JAERI-Conf 2003-002, 166 Pages, 2003/03

JAERI-Conf-2003-002.pdf:9.79MB

The present report is Proceedings of the Third Workshop on Dosimetry for External Radiations, held at the Tokai Research Establishment, Japan Atomic Energy Research Institute (JAERI), in November 28-29, 2002. The proceedings comprises 16 papers and a summary of general discussion. The Third Workshop, subtitled "On an opportunity of the completion of the facility of calibration standards for neutron at JAERI", focused on neutron dosimetry and included presentations on the status of international neutron standards, the development of calibration techniques of neutron dosimeters using accelerator neutron sources, and dosimetry for high-energy neutrons. The workshop identified the directions for the future research and development in this field.

Journal Articles

Neutronic optimization of premoderator and reflector for decoupled hydrogen moderator in 1MW spallation neutron source

Harada, Masahide; Teshigawara, Makoto; Kai, Tetsuya; Sakata, Hideaki*; Watanabe, Noboru; Ikeda, Yujiro

Journal of Nuclear Science and Technology, 39(8), p.827 - 837, 2002/08

 Times Cited Count:18 Percentile:73.21(Nuclear Science & Technology)

For a decoupled hydrogen (super critical) moderator, optimization studies have been performed on a premoderator and reflector material (Pb, Be, Fe and Hg) together with the decoupling energy to realize a higher neutronic performance. The result indicated that the best neutronic performance could be obtained for a decoupled H$$_2$$ moderator in a Pb reflector by optimizing the premoderator and adopting an appropriate decoupling energy, even compared with optimized one in a Be reflector.

JAEA Reports

Premoderator optimization of decoupled hydrogen moderator

Harada, Masahide; Teshigawara, Makoto; Kai, Tetsuya; Sakata, Hideaki*; Watanabe, Noboru; Ikeda, Yujiro

JAERI-Research 2001-016, 32 Pages, 2001/03

JAERI-Research-2001-016.pdf:1.74MB

An optimization study on the premoderator, the reflector material choice and a length of the liner is carried out for the design of high performance decoupled hydrogen moderator. NMTC/JAM and MCNP-4C are used for the neutronics calculation. The result indicates that, assuming premoderator dimensions and decoupling energy is controlled, the decoupled hydrogen moderator with a premoderator can provide better pulse characteristics than that without the premoderator for a Be reflector. On the selection of the reflector material, it is clearly shown that Pb and Hg reflectors give merits in using the premoderator for higher intensity and reduction of energy deposition in moderator. It is also shown that a H2O premoderator provides a short tail while a D2O premoderator provides the high peak intensity. Minimum liner length is evaluated to be 20 cm from the viewpoint of neutronics.

JAEA Reports

Attenuation data of point isotropic neutron sources up to 400MeV in water, ordinary concrete and iron

*; Tanaka, Shunichi; Sakamoto, Yukio; Nakane, Yoshihiro;

JAERI-Data/Code 94-003, 70 Pages, 1994/08

JAERI-Data-Code-94-003.pdf:3.31MB

no abstracts in English

JAEA Reports

Calculation of neutron field generated at thick Li target bombarded with 10-40 MeV deuterons for energy selective neutron irradiation test facility

Oyama, Yukio; Yamaguchi, Seiya*; Kosako, Kazuaki*; Maekawa, Hiroshi

JAERI-M 92-191, 46 Pages, 1992/12

JAERI-M-92-191.pdf:1.12MB

no abstracts in English

7 (Records 1-7 displayed on this page)
  • 1